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Motivation

Recent interest in efficient transmission of short information blocks1

5G New Radio (5G NR) and already 6G2,3

Internet of things (IoT) and wireless sensor networks (WSN), etc.3

Successive-cancellation list (SCL) decoding combined with outer cyclic redundancy
checks (CRCs) makes polar codes competitive for short blocks

Adopted for uplink and downlink control information for the enhanced mobile
broadband (eMBB) communication service4

Candidate for ultra-reliable low-latency communications (URLLCs) and massive
machine-type communications (mMTCs)4

Useful for communicating over the fading channels with no CSI5,6

Part of possible solutions for unsourced random access problem7,8

1
[Polyanskiy et al., 2010], Channel coding rate in the finite blocklength regime... (Trans. Inf. Theory)

2
[Durisi et al., 2016], Towards massive, ultra-reliable, and low-latency wireless communications with short packets... (IEEE Proc.)

3
[Mahmood et al., 2020], White paper on critical and massive machine type communication towards 6G... (CoRR)

4
[Bioglio et al., 2021], Design of polar codes in 5G new radio... (IEEE Commun. Surveys & Tutorials)

5
[Xhemrishi et al., 2019], List decoding of short codes for communication over unknown fading channels... (Asilomar)

6
[Yuan et. al., 2021], Polar-coded non-coherent communication... (Commun. Lett.)

7
[Fengler et. al., 2022], Pilot-based unsourced RA with a massive MIMO receiver, interference cancellation, and power control... (J-SAC)

8
[Gkagkos et al., 2022], FASURA: A scheme for quasi-static massive MIMO unsourced random access channels... (CoRR)
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Linear Codes based on Polar Transform

XN = UNGN where GN ≜ BN
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]⊗n

and N = 2n
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frozen/info bits

Ui = fi
(
U i−1

)
, i ∈ F

UA = V K
1

Reed–Muller (RM) codes: optimize F to maximize minimum distance9,10

Polar codes: optimize F for successive cancellation (SC) decoding11,12

Requires estimation of H(W
(i)
N ) ≜ H

(
Ui |Y N ,U i−1

)
, for i ∈ {1, . . . ,N}

Any binary linear code is obtained with suitable F and fi ,
13 i ∈ F

9
[Muller, 1954], Application of boolean algebra to switching circuit design and to error detection... (Trans. IRE Elect. Comp.)

10
[Reed, 1954], A class of multiple-error-correcting codes and the decoding scheme... (Trans. IRE Inf. Theory)

11
[Stolte, 2002], Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung... (PhD Thesis, TU Darmstadt)

12
[Arıkan, 2009], Channel polarization: A method for constructing capacity-achieving codes for BMSCs... (Trans. Inf. Theory)

13
[Trifonov and Miloslavskaya, 2016], Polar subcodes... (J-SAC)
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Successive-Cancellation Decoding

Example: u3 = 0 (frozen bit)
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Errors made by SC decoding cannot be corrected by later decisions

Use SC list (SCL) decoding11,14,15 to approach ML decoding performance

11
[Stolte, 2002], Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung... (PhD Thesis, TU Darmstadt)

14
[Dumer and Shabunov, 2006], Soft-decision decoding of Reed-Muller codes: recursive lists... (Trans. Inf. Theory)

15
[Tal and Vardy, 2015], List decoding of polar codes... (Trans. Inf. Theory)
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Successive-Cancellation List Decoding

For each i , both options are stored for decision on ûi (i-th decoding stage,)
which doubles the number of paths at each decoding stage

û1

û2

frozen û3

û4

L = 2
�

� �
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��

1 0
rank based on PU i |Y N (ûi |yN)

After N-th stage

ûN = argmax
uN∈L

PUN |Y N

(
uN |yN

)
��

00

�

0

Keep a list L of past decisions for a set of L likely paths
Use an optimal rule to choose between final codewords on the list L
Recall that any binary linear code can be represented as a polar code
Can be used for any binary linear block code; may not be efficient
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Motivating Question

What list size is sufficient to approach ML decoding performance for a given code
and channel?

Can be attacked via simulation but quite complex for long codes and lists

Simulation alone unlikely to provide insight into the question

A theoretical answer might enable better code designs for SCL decoding

A recent related work co-authored by Vardy16 provides an upper bound on the
sufficient list size by generalizing a previous result co-authored by Urbanke17

16
[Fazeli et al., 2021], List decoding of polar codes: How large should the list be to achieve ML decoding?... (ISIT)

17
[Hashemi et al., 2018], Decoder partitioning: Towards practical list decoding of polar codes... (Trans. Commun.)
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Summary of Results

New bounds related to the list size required for near-ML performance

To avoid losing true codeword, its rank must not be larger than list size

The expected log-rank of correct codeword is upper bounded by an entropy

Bounds on this entropy are derived and relatively easy to compute

The log-rank of correct codeword concentrates around this mean

As an application, the analysis is used to modify RM codes
New codes outperform 5G codes under SCL decoding with practical list sizes

For the binary erasure channel (BEC)

This entropy equals the dimension of an affine subspace

The random dimension sequence can be approximated by a Markov chain

For a fixed number of erasures, the approximation is reasonably accurate
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An Information Theoretic Perspective (1)

Basic Idea: After m steps, consider the conditional entropy H
(
Um|Y N

)
The chain rule of entropy implies:

H
(
Um|Y N

)
=

m∑
i=1

H
(
Ui

∣∣U i−1,Y N
1

)
=

m∑
i=1

H
(
W

(i)
N

)
But what about the frozen bits?

Coşkun and Pfister An Information-Theoretic Perspective on SCL Decoding November 2, 2022 10 / 31



An Information-Theoretic Perspective (2)

For the first m input bits, the information/frozen sets are denoted

A(m) ≜ A ∩ {1, . . . ,m} and F (m) ≜ F ∩ {1, . . . ,m}

Key Idea: information entropy given frozen bits

dm(y
N) ≜ H

(
UA(m)

∣∣Y N = yN ,UF (m)

)
and D̄m = H

(
UA(m)

∣∣Y N ,UF (m)

)
∑

i∈A(m)

H
(
W

(i)
N

)
−

∑
i∈F (m)

(
1− H

(
W

(i)
N

))
≤ D̄m ≤

∑
i∈A(m)

H
(
W

(i)
N

)
Q: Is the sequence {D̄m} relevant for the list size for near-ML decoding on BMSCs?
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An Exemplary (512, 256) Code

A fixed-weight BEC with exactly round(512× 0.48) erasures
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Bounding the List Size

Theorem

Upon observing yN when uN is sent, we define the set (for α ∈ (0, 1])

S(m)
α

(
um, yN

)
≜ {ũm : P

(
ũA(m) |yN , ũF (m)

)
≥ αP

(
uA(m) |yN1 , uF (m)

)
}. Then,

E
[
log2 |S(m)

α |
]
≤ D̄m + log2

1
α = H

(
UA(m)

∣∣Y N ,UF (m)

)
+ log2

1
α

Choosing α < 1 (say 0.94) captures near misses and matches entropy better

Consider SCL decoding with max list size Lm after the m-th decoding step

It needs to satisfy Lm ≥ |S(m)
1 | for the true um1 to stay on the list

A first-order code design criterion: log2 Lm ≥ D̄m

(reduce the peak D̄max ≜ maxm D̄m)
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A Few Remarks

This approach currently has two weaknesses:

Entropy determined by typical events but coding cares about rare events

Sequence D̄m averaged over Y N but decoder sees one realization dm(y
N)

Theorem

For a wide range of BMS channels, the random variable Dm concentrates around its
mean D̄m, i.e., for any β > 0, we have

P
{

1

N
|Dm − D̄m| > β

}
≤ 2 exp

(
−β2

c2
N

)
where c is a positive constant defined by the channel

Coşkun and Pfister An Information-Theoretic Perspective on SCL Decoding November 2, 2022 14 / 31



Outline

1 Background

2 An Information-Theoretic Perspective
Binary Erasure Channel

3 Numerical Results

4 Conclusions
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Successive Cancellation Inactivation Decoding

Consider SCL decoding with unbounded list size on the BEC

Set of all valid paths after any decoding stage forms an affine subspace

SCL decoding tracks all valid paths defined by this subspace

SC inactivation (SCI) decoding instead stores a basis for space18

If SC decoding step outputs erasure, inactivate the bit and add basis vector

Later messages in decoder are functions of inactivated bits (i.e., basis vectors)

If SC decoding of frozen bit is an unerased message, then resulting equation may
allow one to consolidate the basis (i.e., remove a basis vector)

18
[Coşkun, Neu, and Pfister, 2020], Successive cancellation inactivation decoding for modified Reed–Muller and eBCH codes... (ISIT)
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Successive Cancellation Inactivation Decoding: Algorithm
Example: u3 = 0 (frozen bits)
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(
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= subspace dimension after m-th decoding stage
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û4 = 0d4
(
y41

)
= 0

�

0

�

� �

0 1

��

0 0

�

0

�

0

Unique solution only if dN
(
yN1

)
= 0; otherwise declare an error

Equivalent to SCL decoding with unbounded list size aka ML decoding
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PAC Codes and the Dynamic Reed-Muller Ensemble

Polarization-adjusted convolutional (PAC) codes19:

Given set A and a rate-1 convolutional code (CC) with memory ν

Encode information and frozen bit sequence with CC before applying polar transform

Decode using SCL or other methods, e.g., sequential decoding

For short lengths, RM frozen indices appear to be a good choice

Dynamic RM (dRM) code ensemble18:

Let A be the information indices of an RM code

Modified RM code where frozen bits are random linear function of past bits

Closely related to PAC codes

19
[Arıkan, 2019], From sequential decoding to channel polarization and back again... (CoRR)

18
[Coşkun, Neu and Pfister, 2020] Successive cancellation inactivation decoding for modified Reed–Muller and eBCH codes... (ISIT)
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(512, 256) dRM Code

A fixed-weight BEC with exactly round(512× 0.48) erasures
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(512, 256) dRM Code
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w = 0.4

How does D̄m behave as
block length increases?

Let w ≜ m
N , m ∈ {1, . . . ,N},

define the sequence 1
N D̄wN

E.g.: w = 0.4 → 1
512 D̄0.4N
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Growth Rate of Subspace Dimension for dRM Codes with R = 0.5

A fixed-weight BEC with exactly round(N × 0.48) erasures
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Growth Rate of Subspace Dimension for dRM Codes with R = 0.5
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Set w = 0.4 and plot
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where d ∈ DN ⊂ [0,R]
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PMFs for 1
ND[0.4N] for dRM Codes with R = 0.5
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CDFs for 1
ND[0.4N] for dRM Codes with R = 0.5
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(128, 64) dRM Code over the BAWGNC

Eb/N0 = 0.5 dB
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(128, 64) Proposed vs dRM Code over the BAWGNC

Proposed Code

u{30,40} dynamic
frozen bits

u{1,57} info. bits
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(128, 64) Codes over the BAWGNC
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(128, 64) Codes over the BAWGNC
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(512, 256) Codes over the BAWGNC
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Related Work

A lot of recent work in this area. Here is partial list of some notable papers:

Optimization of frozen bit positions for SCL decoding

E.g., recent works co-authored by Viterbo [RV19], ten Brink [EECtB19],
Hashemi [LHCG22, LHYC22] and Ye [LYH21, LYH22]

Optimization of polar codes with dynamic frozen bits for SCL decoding
(another keyword: pre-transformed polar codes)

E.g., co-authored by Miloslavskaya on short designs [MV20, MVL+21]

E.g., co-authored by Zhang on their concatenation with CRCs [LGZ21]

Distance spectrum analysis of polar codes with dynamic frozen bits

E.g., a recent award-winning work co-authored by Vardy [YFV21] and another work
co-authored by Zhang [LZL+21]

E.g., on PAC codes co-authored by Vardy [YFV20] and Viterbo [RBV20]
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Conclusions

Recent advances in polar codes allow performance near random coding union
bound for codes up to 512 bits of length with moderate complexity

Dynamic frozen bits act as outer code that improves minimum distance

SCL decoding can fully exploit outer code with large enough list size

“What list size is sufficient to approach maximum-likelihood (ML)
decoding performance under an SCL decoder?”

Information theory provides some estimates of required list size

For the BEC, the estimate is quite accurate and even relevant for optimum decoding

Analysis leads to improved designs (in comparison with the PAC code and 5G
polar codes) under SCL decoding with list sizes L ∈ [8, 1024]
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Thanks for your attention
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